Blog

Ultrafast relaxation of acoustic and optical phonons in a topological nodal-line semimetal ZrSiS

11:31 12 agosto in Artículos por Website
0


  • Hasan, M. Z., Xu, S.-Y. & Neupane, M. In Topological Insulators: Fundamentals and Perspectives (eds. Ortmann, F. Roche, S. & Valenzuela, S. O.) Ch. 4 (John Wiley & Sons, 2015).

  • Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Weng, H., Dai, X. & Fang, Z. Topological semimetals predicted from first-principles calculations. J. Phys. Condens. Matter 28, 303001 (2016).

    Article 

    Google Scholar
     

  • Hasan, M. Z., Xu, S.-Y., Belopolski, I. & Huang, S.-M. Discovery of Weyl fermion semimetals and topological Fermi arc states. Annu. Rev. Condens. Matter Phys. 8, 289 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Neupane, M. et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys. Rev. B 93, 201104 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 1–7 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Klemenz, S., Lei, S. & Schoop, L. M. Topological semimetals in square-set materials. Annu. Rev. Mater. Res. 49, 185 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Fang, C., Weng, H., Dai, X. & Fang, Z. Topological nodal line semimetals. Chin. Phys. B 25, 117106 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Gatti, G. et al. Light-induced renormalization of the Dirac quasiparticles in the nodal-line semimetal ZrSiSe. Phys. Rev. Lett. 125, 076401 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac line nodes in inversion-symmetry crystals. Phys. Rev. Lett. 115, 036809 (2015).

    ADS 

    Google Scholar
     

  • Yu, R., Fang, Z., Dai, X. & Weng, H. M. Topological nodal line semimetals predicted from first-principles calculations. Front. Phys. 12, 127202 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Xu, Q. N., Yu, R., Fang, Z., Dai, X. & Weng, H. M. Topological nodal line semimetals in the CaP3 family of materials. Phys. Rev. B 95, 045136 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Yang, S. Y. et al. Symmetry demanded topological nodal-line materials. Adv. Phys. X 3, 1414631 (2018).


    Google Scholar
     

  • Chan, Y.-H., Chiu, C.-K., Chou, M. Y. & Schnyder, A. P. Ca3P2 and other topological semimetals with line nodes and drumhead surface states. Phys. Rev. B 93, 205132 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Bian, G. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 7, 10556 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Hosen, M. M. et al. Experimental observation of drumhead surface states in SrAs3. Sci. Rep. 10, 2776 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Lou, R. et al. Experimental observation of bulk nodal lines and electronic surface states in ZrB2. npj Quantum Mater. 3, 43 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Sims, C. M. et al. Termination dependent topological surface states in nodal-loop semimetal HfP2. Phys. Rev. Mater. 4, 054201 (2020).

    Article 

    Google Scholar
     

  • Kirby, R. J. et al. Transient drude response dominates near-infrared pump-probe reflectivity in nodal-line semimetals ZrSiS and ZrSiSe. J. Phys. Chem. Lett. 11, 6105–6111 (2020).

    Article 

    Google Scholar
     

  • Liu, J. & Balents, L. Correlation effects and quantum oscillations in topological nodal-loop semimetals. Phys. Rev. B 95, 075426 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Rudenko, A. N. & Yuan, S. Electron-phonon interaction and zero-field charge carrier transport in the nodal-line semimetal ZrSiS. Phys. Rev. B 101, 115127 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Topp, A. et al. Non-symmorphic band degeneracy at the Fermi level in ZrSiTe. N. J. Phys. 18, 125014 (2016).

    Article 

    Google Scholar
     

  • Hu, J. et al. Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe. Phys. Rev. Lett. 117, 016602 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Hosen, M. M. et al. Tunability of the topological nodal-line semimetal phase in ZrSiX-type materials (X = S, Se, Te). Phys. Rev. B 95, 161101 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Chen, C. et al. Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS(M = Hf, Zr). Phys. Rev. B 95, 125126 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Lou, R. et al. Emergence of topological bands on the surface of ZrSnTe crystal. Phys. Rev. B 93, 241104 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Hu, J. et al. Quantum oscillation evidence for a topological semimetal phase in ZrSnTe. Phys. Rev. B 97, 155101 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Zhang, J. et al. Transport evidence of 3D topological nodal-line semimetal phase in ZrSiS. Front. Phys. 13, 137201 (2017).

    Article 

    Google Scholar
     

  • Hosen, M. M. et al. Observation of gapless Dirac surface states in ZrGeTe. Phys. Rev. B 97, 121103 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Yen, Y. et al. Dirac nodal line and Rashba spin-split surface states in nonsymmorphic ZrGeTe. N. J. Phys. 23, 103019 (2021).

    Article 

    Google Scholar
     

  • Fu, B.-B. et al. Dirac nodal surfaces and nodal lines in ZrSiS. Sci. Adv. 5, eaau6459 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Wang, C. & Hughbanks, T. Main group element size and substitution effects on the structural dimensionality of zirconium tellurides of the ZrSiS type. lnorg. Chem. 34, 5524–5529 (1995).

    Article 

    Google Scholar
     

  • Singha, R., Pariari, A. K., Satpati, B. & Mandal, P. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS. Proc. Natl Acad. Sci. USA 114, 2468–2473 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Sankar, R. et al. Crystal growth of Dirac semimetal ZrSiS with high magnetoresistance and mobility. Sci. Rep. 7, 40603 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Su, C.-C. et al. Surface termination dependent quasiparticle scattering interference and magneto-transport study on ZrSiS. N. J. Phys. 20, 103025 (2018).

    Article 

    Google Scholar
     

  • Schilling, M. B., Schoop, L. M., Lotsch, B. V., Dressel, M. & Pronin, A. V. Flat optical conductivity in ZrSiS due to two-dimensional Dirac bands. Phys. Rev. Lett. 119, 187401 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Matusiak, M., Cooper, J. & Kaczorowski, D. Thermoelectric quantum oscillations in ZrSiS. Nat. Commun. 8, 15219 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Weber, C. P. et al. Directly photoexcited Dirac and Weyl fermions in ZrSiS and NbAs. Appl. Phys. Lett. 113, 221906 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Weber, C. P. Ultrafast investigation and control of Dirac and Weyl semimetals. J. Appl. Phys. 129, 070901 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Sobota, J. A. et al. Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3. Phys. Rev. Lett. 108, 117403 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Hajlaoui, M. et al. Ultrafast surface carrier dynamics in the topological insulator Bi2Te3. Nano Lett. 12, 3532–3536 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. Measurement of intrinsic Dirac fermion cooling on the surface of the topological insulator Bi2Se3 using time-resolved and angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 109, 127401 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Crepaldi, A. et al. Ultrafast photodoping and effective Fermi-Dirac distribution of the Dirac particles in Bi2Se3. Phys. Rev. B 86, 205133 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Neupane, M. et al. Gigantic surface lifetime of an intrinsic topological insulator. Phys. Rev. Lett. 115, 116801 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Extreme ultraviolet time-and angle-resolved photoemission setup with 21.5 meV resolution using high-order harmonic generation from a turn-key Yb:KGW amplifier. Rev. Sci. Instrum. 91, 013102 (2020).

    ADS 
    Article 

    Google Scholar
     



  • Source link