Blog

Topological transitions in the presence of random magnetic domains

11:31 28 agosto in Artículos por Website
0


  • Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous Symmetry Group I. Classical systems. Sov. Phys. JETP 32, 493 (1970).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous Symmetry Group. II. Quantum systems. Sov. Phys. JETP 34, 610 (1972).

    ADS 

    Google Scholar
     

  • Kosterlitz, J. M. The critical properties of the two-dimensional xy model. J. Phys. C: Solid State Phys. 7, 1046 (1973).

    ADS 
    Article 

    Google Scholar
     

  • Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6, 1181 (1973).

    ADS 
    Article 

    Google Scholar
     

  • Doniach, S. & Huberman, B. A. Topological excitations in two-dimensional superconductors. Phys. Rev. Lett. 42, 1169–1172 (1979).

    ADS 
    Article 

    Google Scholar
     

  • Minnhagen, P. Kosterlitz-Thouless transition for a two-dimensional superconductor: Magnetic-field dependence from a Coulomb-gas analogy. Phys. Rev. B 23, 5745–5761 (1981).

    ADS 
    Article 

    Google Scholar
     

  • Wen, X. G. Electrodynamical properties of gapless edge excitations in the fractional quantum Hall states. Phys. Rev. Lett. 64, 2206–2209 (1990).

    ADS 
    Article 

    Google Scholar
     

  • Lee, D. H. & Wen, X. G. Edge excitations in the fractional-quantum-Hall liquids. Phys. Rev. Lett. 66, 1765–1768 (1991).

    ADS 
    Article 

    Google Scholar
     

  • Zhang, S. C. & Arovas, D. P. Effective field theory of electron motion in the presence of random magnetic flux. Phys. Rev. Lett. 72, 1886–1889 (1994).

    ADS 
    Article 

    Google Scholar
     

  • Xie, X. C., Wang, X. R. & Liu, D. Z. Kosterlitz-Thouless-type metal-insulator transition of a 2D electron gas in a random magnetic field. Phys. Rev. Lett. 80, 3563–3566 (1998).

    ADS 
    Article 

    Google Scholar
     

  • Chen, C. Z., Liu, H. & Xie, X. C. Effects of random domains on the zero hall plateau in the quantum anomalous hall effect. Phys. Rev. Lett. 122, 026601 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Kou, X. et al. Metal-to-insulator switching in quantum anomalous Hall states. Nat. Commun. 6, 8474 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Li, Y. H. & Cheng, R. Spin fluctuations in quantized transport of magnetic topological insulators. Phys. Rev. Lett. 126, 026601 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3. Proc. Natl Acad. Sci. USA 112, 1316–1321 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Lachman, E. O. et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. 1, e1500740 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Wang, W., Chang, C.-Z., Moodera, J. S. & Wu, W. Visualizing ferromagnetic domain behavior of magnetic topological insulator thin films. npj Quantum Mater. 1, 16023 (2016).

    Article 

    Google Scholar
     

  • Wang, W. et al. Direct evidence of ferromagnetism in a quantum anomalous Hall system. Nat. Phys. 14, 791–795 (2018).

    Article 

    Google Scholar
     

  • Khveshchenko, D. V. & Meshkov, S. V. Particle in a random magnetic field on a plane. Phys. Rev. B Condens. Matter 47, 12051–12058 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Aronov, A. G., Mirlin, A. D. & Wolfle, P. Localization of charged quantum particles in a static random magnetic field. Phys. Rev. B Condens. Matter 49, 16609–16613 (1994).

    ADS 
    Article 

    Google Scholar
     

  • Geim, A. K., Bending, S. J., Grigorieva, I. V. & Blamire, M. G. Ballistic two-dimensional electrons in a random magnetic field. Phys. Rev. B Condens. Matter 49, 5749–5752 (1994).

    ADS 
    Article 

    Google Scholar
     

  • Yang, K. & Bhatt, R. N. Current-carrying states in a random magnetic field. Phys. Rev. B 55, R1922–R1925 (1997).

    ADS 
    Article 

    Google Scholar
     

  • Taras-Semchuk, D. & Efetov, K. B. Antilocalization in a 2D electron gas in a random magnetic field. Phys. Rev. Lett. 85, 1060–1063 (2000).

    ADS 
    Article 

    Google Scholar
     

  • Taras-Semchuk, D. & Efetov, K. B. Influence of long-range disorder on electron motion in two dimensions. Phys. Rev. B 64, 115301 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Wang, C., Su, Y., Avishai, Y., Meir, Y. & Wang, X. R. Band of critical States in anderson localization in a strong magnetic field with random spin-orbit scattering. Phys. Rev. Lett. 114, 096803 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Lu, H.-Z., Shan, W.-Y., Yao, W., Niu, Q. & Shen, S.-Q. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B 81, 115407 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Wang, J., Lian, B. & Zhang, S.-C. Universal scaling of the quantum anomalous Hall plateau transition. Phys. Rev. B 89, 085106 (2014).

    ADS 
    Article 

    Google Scholar
     

  • He, Q. L. et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure. Science 357, 294–299 (2017).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Pan, L. et al. Probing the low-temperature limit of the quantum anomalous Hall effect. Sci. Adv. 6, eaaz3595 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Epstein, K., Goldman, A. M. & Kadin, A. M. Vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 47, 534–537 (1981).

    ADS 
    Article 

    Google Scholar
     

  • Kadin, A. M., Epstein, K. & Goldman, A. M. Renormalization and the Kosterlitz-Thouless transition in a two-dimensional superconductor. Phys. Rev. B 27, 6691–6702 (1983).

    ADS 
    Article 

    Google Scholar
     

  • Yasuda, K. et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 358, 1311–1314 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Tsemekhman, V., Tsemekhman, K., Wexler, C., Han, J. H. & Thouless, D. J. Theory of the breakdown of the quantum Hall effect. Phys. Rev. B 55, R10201–R10204 (1997).

    ADS 
    Article 

    Google Scholar
     

  • Kawamura, M. et al. Current-driven instability of the quantum anomalous hall effect in ferromagnetic topological insulators. Phys. Rev. Lett. 119, 016803 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Fox, E. J. et al. Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect. Phys. Rev. B 98, 075145 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Halperin, B. I. & Nelson, D. R. Resistive transition in superconducting films. J. Low. Temp. Phys. 36, 599–616 (1979).

    ADS 
    Article 

    Google Scholar
     

  • Kawamura, M. et al. Current scaling of the topological quantum phase transition between a quantum anomalous Hall insulator and a trivial insulator. Phys. Rev. B 102, 041301(R) (2020).

    ADS 
    Article 

    Google Scholar
     

  • Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett. 39, 1201–1205 (1977).

    ADS 
    Article 

    Google Scholar
     

  • Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    ADS 
    Article 

    Google Scholar
     

  • He, Q. L. et al. Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure. Nat. Commun. 5, 4247 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Felsch, W. & Winzer, K. Magnetoresistivity of (La, Ce)Al2 alloys. Solid State Commun. 13, 569–573 (1973).

    ADS 
    Article 

    Google Scholar
     

  • Li, Y. et al. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide. Phys. Rev. B 87, 155151 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Beekman, AronJ. et al. Dual gauge field theory of quantum liquid crystals in two dimensions. Phys. Rep. 683, 1–110 (2017).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Wang, X. R. Localization in fractal spaces: Exact results on the Sierpinski gasket. Phys. Rev. B Condens. Matter 51, 9310–9313 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Wang, X. R. Magnetic-field effects on localization in a fractal lattice. Phys. Rev. B Condens. Matter 53, 12035–12039 (1996).

    ADS 
    Article 

    Google Scholar
     



  • Source link