Blog

Reassigning the shapes of the 0+ states in the 186Pb nucleus

11:31 20 agosto in Artículos por Website
0


  • Heyde, K. & Wood, J. L. Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467–1521 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Julin, R., Helariutta, K. & Muikku, M. Intruder states in very neutron-deficient Hg, Pb and Po nuclei. J. Phys. G: Nucl. Part. Phys. 27, R109–R139 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Bonn, J., Huber, G., Kluge, H.-J., Kugler, L. & Otten, E. W. Sudden change in the nuclear charge distribution of very light mercury isotopes. Phys. Lett. B 38, 308–311 (1972).

    ADS 
    Article 

    Google Scholar
     

  • Julin, R., Grahn, T., Pakarinen, J. & Rahkila, P. In-beam spectroscopic studies of shape coexistence and collectivity in the neutron-deficient Z ≈ 82 nuclei. J. Phys. G: Nucl. Part. Phys. 43, 024004 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Andreyev, A. N. et al. A triplet of differently shaped spin-zero states in the atomic nucleus 186Pb. Nature 405, 430–433 (2000).

    ADS 
    Article 

    Google Scholar
     

  • Van Duppen, P. et al. Observation of low-lying Jπ = 0+ states in the single-closed-shell nuclei 192−198Pb. Phys. Rev. Lett. 52, 1974–1977 (1984).

    ADS 
    Article 

    Google Scholar
     

  • Van Duppen, P., Coenen, E., Deneffe, K., Huyse, M. & Wood, J. L. Low-lying Jπ=0+ states in 190,192Pb populated in the α-decay of 194,196Po. Phys. Lett. B 154, 354–357 (1985).

    ADS 
    Article 

    Google Scholar
     

  • Grahn, T. et al. Collectivity and configuration mixing in 186,188Pb and 194Po. Phys. Rev. Lett. 97, 062501 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Grahn, T. et al. Lifetimes of intruder states in 186Pb, 188Pb and 194Po. Nucl. Phys. A 801, 83–100 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Wrzosek-Lipska, K. et al. Electromagnetic properties of low-lying states in neutron-deficient Hg isotopes: Coulomb excitation of 182Hg, 184Hg, 186Hg and 188Hg. Eur. Phys. J. A 55, 130 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Gaffney, L. P. et al. Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements in 184,186Hg and two-state mixing calculations. Phys. Rev. C 89, 24307 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Dendooven, P. et al. Life time measurements of 0+ intruder states in 190,192,194Pb. Phys. Lett. B 226, 27–30 (1989).

    ADS 
    Article 

    Google Scholar
     

  • De Witte, H. et al. Nuclear charge radii of neutron-deficient lead isotopes beyond N = 104 midshell investigated by in-source laser spectroscopy. Phys. Rev. Lett. 98, 112502 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Baxter, A. M. et al. Spectroscopy of 186Pb with mass identification. Phys. Rev. C 48, R2140–R2143 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Heese, J. et al. Evidence for low-lying prolate bands in 188Pb and 186Pb. Phys. Lett. B 302, 390–395 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Reviol, W. et al. Spectroscopy of 186Pb and 186Tl via evaporation residue detection. Phys. Rev. C 68, 054317 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Pakarinen, J. et al. Evidence for oblate structure in 186Pb. Phys. Rev. C 72, 011304 (2005).

    ADS 
    Article 

    Google Scholar
     

  • Pakarinen, J. et al. Investigation of nuclear collectivity in the neutron mid-shell nucleus 186Pb. Phys. Rev. C 75, 014302 (2007).

    ADS 
    Article 

    Google Scholar
     

  • May, F. R., Pashkevich, V. V. & Frauendorf, S. A prediction on the shape transitions in very neutron-deficient even-mass isotopes in the lead region. Phys. Lett. B 68, 113–116 (1977).

    ADS 
    Article 

    Google Scholar
     

  • Nazarewicz, W. Variety of shapes in the mercury and lead isotopes. Phys. Lett. B 305, 195–201 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Tajima, N., Flocard, H., Bonche, P., Dobaczewski, J. & Heenen, P.-H. Diabatic effects in 186Pb: a generator-coordinate analysis. Nucl. Phys. A 551, 409–433 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Chasman, R. R., Egido, J. L. & Robledo, L. M. Persistence of deformed shapes in the neutron-deficient Pb region. Phys. Lett. B 513, 325–329 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Duguet, T., Bender, M., Bonche, P. & Heenen, P.-H. Shape coexistence in 186Pb: beyond-mean-field description by configuration mixing of symmetry restored wave functions. Phys. Lett. B 559, 201–206 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Fossion, R., Heyde, K., Thiamova, G. & Van Isacker, P. Intruder bands and configuration mixing in lead isotopes. Phys. Rev. C 67, 024306 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Bender, M., Bonche, P., Duguet, T. & Heenen, P.-H. Configuration mixing of angular momentum projected self-consistent mean-field states for neutron-deficient Pb isotopes. Phys. Rev. C 69, 064303 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Rodríguez-Guzmán, R. R., Egido, J. L. & Robledo, L. M. Beyond mean field description of shape coexistence in neutron-deficient Pb isotopes. Phys. Rev. C 69, 054319 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Egido, J. L., Robledo, L. M. & Rodríguez-Guzmán, R. R. Unveiling the origin of shape coexistence in lead isotopes. Phys. Rev. Lett. 93, 082502 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Nomura, K., Rodríguez-Guzmán, R., Robledo, L. M. & Shimizu, N. Shape coexistence in lead isotopes in the interacting boson model with a gogny energy density functional. Phys. Rev. C 86, 034322 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Yao, J. M., Bender, M. & Heenen, P.-H. Systematics of low-lying states of even-even nuclei in the neutron-deficient lead region from a beyond-mean-field calculation. Phys. Rev. C 87, 034322 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Pakarinen, J. et al. The SAGE spectrometer. Eur. Phys. J. A 50, 53 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Eberth, J. & Simpson, J. From Ge(Li) detectors to gamma-ray tracking arrays–50 years of gamma spectroscopy with germanium detectors. Prog. Part. Nucl. Phys. 60, 283–337 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Butler, P. A. et al. Electron spectroscopy using a multi-detector array. Nucl. Instrum. Methods A 381, 433–442 (1996).

    ADS 
    Article 

    Google Scholar
     

  • Kankaanpää, H. et al. In-beam electron spectrometer used in conjunction with a gas-filled recoil separator. Nucl. Instrum. Methods A 534, 503–510 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Kibédi, T., Garnsworthy, A. B. & Wood, J. L. Electric monopole transitions in nuclei. Prog. Part. Nucl. Phys. 123, 103930 (2022).

    Article 

    Google Scholar
     

  • Kibédi, T., Burrows, T. W., Trzhaskovskaya, M. B., Davidson, P. M. & Nestor, C. W. Evaluation of theoretical conversion coefficients using BrIcc. Nucl. Instrum. Methods A 589, 202–229 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Dracoulis, G. D. et al. Isomer bands, E0 transitions, and mixing due to shape coexistence in \({}_{82}^{188}{{{{{{{{\rm{Pb}}}}}}}}}_{106}\). Phys. Rev. C 67, 051301 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Church, E. L., Rose, M. E. & Weneser, J. Electric-monopole directional-correlation experiments. Phys. Rev. 109, 1299–1306 (1958).

    ADS 
    Article 

    Google Scholar
     

  • Dowie, J. T. H., Kibédi, T., Eriksen, T. K. & Stuchbery, A. E. Table of electronic factors for E0 electron and electron–positron pair conversion transitions. Atomic Data Nuclear Data Tables 131, 101283 (2020).

    Article 

    Google Scholar
     

  • Wood, J. L., Zganjar, E. F., De Coster, C. & Heyde, K. Electric monopole transitions from low energy excitations in nuclei. Nucl. Phys. A 651, 323–368 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Hellemans, V., De Baerdemacker, S. & Heyde, K. Configuration mixing in the neutron-deficient 186−196Pb isotopes. Phys. Rev. C 77, 064324 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Zhang, W. Q. et al. First observation of a shape isomer and a low-lying strongly-coupled prolate band in neutron-deficient semi-magic 187Pb. Phys. Lett. B 829, 137129 (2022).

    Article 

    Google Scholar
     

  • Smirnova, N., Heenen, P.-H. & Neyens, G. Self-consistent approach to deformation of intruder states in neutron-deficient Pb and Po. Phys. Lett. B 569, 151–158 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Möller, P., Sierk, A. J., Bengtsson, R., Sagawa, H. & Ichikawa, T. Global calculation of nuclear shape isomers. Phys. Rev. Lett. 103, 212501 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Van de Vel, K. et al. Fine structure in the α decay of 188,192Po. Phys. Rev. C 68, 054311 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Van Duppen, P., Huyse, M. & Wood, J. L. Mixing of intruder and normal states in Pb nuclei. J. Phys. G: Nucl. Part. Phys. 16, 441–450 (1990).

    ADS 
    Article 

    Google Scholar
     

  • Marsh, B. A. et al. Characterization of the shape-staggering effect in mercury nuclei. Nat. Phys. 14, 1163–1167 (2018).

    Article 

    Google Scholar
     

  • Oros, A. M. et al. Shape coexistence in the light Po isotopes. Nucl. Phys. A 645, 107–142 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Van de Vel, K. et al. In-beam γ-ray spectroscopy of 190Po: First observation of a low-lying prolate band in Po isotopes. Eur. Phys. J. A 17, 167–171 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Papadakis, P. et al. The SPEDE spectrometer. Eur. Phys. J. A 54, 42 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Warr, N. et al. The Miniball spectrometer. Eur. Phys. J. A 49, 40 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Kadi, Y. et al. Post-accelerated beams at ISOLDE. J. Phys. G: Nucl. Part. Phys. 44, 084003 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Tang, T. L. et al. First exploration of neutron shell structure below lead and beyond n = 126. Phys. Rev. Lett. 124, 062502 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Backe, H. et al. In-beam spectroscopy of low energy conversion electrons with a recoil shadow method — a new possibility for subnanosecond lifetime measurements. Z. Phys. A 285, 159–169 (1978).

    ADS 
    Article 

    Google Scholar
     

  • Pakarinen, J. et al. Recoil-shadow electron spectroscopy of low-lying 0+ states in 186Pb and 194Po. Proposal to the JYFL-PAC (2006).

  • Leino, M. et al. Gas-filled recoil separator for studies of heavy elements. Nucl. Instrum. Methods B 99, 653–656 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Page, R. D. et al. The GREAT spectrometer. Nucl. Instrum. Methods B 204, 634–637 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Paul, E. S. et al. In-beam γ-ray spectroscopy above \({}^{100}{{{{{{{\rm{Sn}}}}}}}}\) using the new technique of recoil decay tagging. Phys. Rev. C 51, 78–87 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Simon, R. S. et al. Evidence for nuclear shape coexistence in 180Hg. Z. Phys. A 325, 197–202 (1986).

    ADS 

    Google Scholar
     

  • Beck, F. A. EUROBALL: Large gamma ray spectrometers through european collaborations. Prog. Part. Nucl. Phys. 28, 443–461 (1992).

    ADS 
    Article 

    Google Scholar
     

  • Wauters, J. et al. Alpha decay of 186Pb and 184Hg: The influence of mixing of 0+ states on α-decay transition probabilities. Phys. Rev. C 50, 2768–2773 (1994).

    ADS 
    Article 

    Google Scholar
     

  • Lazarus, I. et al. The GREAT triggerless total data readout method. IEEE Trans. Nucl. Sci. 48, 567–569 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Rahkila, P. Grain—a java data analysis system for total data readout. Nucl. Instrum. Methods A 595, 637–642 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Brun, R. & Rademakers, F. ROOT — an object oriented data analysis framework. Nucl. Instrum. Methods A 389, 81–86 (1997).

    ADS 
    Article 

    Google Scholar
     



  • Source link