Reassigning the shapes of the 0+ states in the 186Pb nucleus
Heyde, K. & Wood, J. L. Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467–1521 (2011).
Julin, R., Helariutta, K. & Muikku, M. Intruder states in very neutron-deficient Hg, Pb and Po nuclei. J. Phys. G: Nucl. Part. Phys. 27, R109–R139 (2001).
Bonn, J., Huber, G., Kluge, H.-J., Kugler, L. & Otten, E. W. Sudden change in the nuclear charge distribution of very light mercury isotopes. Phys. Lett. B 38, 308–311 (1972).
Julin, R., Grahn, T., Pakarinen, J. & Rahkila, P. In-beam spectroscopic studies of shape coexistence and collectivity in the neutron-deficient Z ≈ 82 nuclei. J. Phys. G: Nucl. Part. Phys. 43, 024004 (2016).
Andreyev, A. N. et al. A triplet of differently shaped spin-zero states in the atomic nucleus 186Pb. Nature 405, 430–433 (2000).
Van Duppen, P. et al. Observation of low-lying Jπ = 0+ states in the single-closed-shell nuclei 192−198Pb. Phys. Rev. Lett. 52, 1974–1977 (1984).
Van Duppen, P., Coenen, E., Deneffe, K., Huyse, M. & Wood, J. L. Low-lying Jπ=0+ states in 190,192Pb populated in the α-decay of 194,196Po. Phys. Lett. B 154, 354–357 (1985).
Grahn, T. et al. Collectivity and configuration mixing in 186,188Pb and 194Po. Phys. Rev. Lett. 97, 062501 (2006).
Grahn, T. et al. Lifetimes of intruder states in 186Pb, 188Pb and 194Po. Nucl. Phys. A 801, 83–100 (2008).
Wrzosek-Lipska, K. et al. Electromagnetic properties of low-lying states in neutron-deficient Hg isotopes: Coulomb excitation of 182Hg, 184Hg, 186Hg and 188Hg. Eur. Phys. J. A 55, 130 (2019).
Gaffney, L. P. et al. Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements in 184,186Hg and two-state mixing calculations. Phys. Rev. C 89, 24307 (2014).
Dendooven, P. et al. Life time measurements of 0+ intruder states in 190,192,194Pb. Phys. Lett. B 226, 27–30 (1989).
De Witte, H. et al. Nuclear charge radii of neutron-deficient lead isotopes beyond N = 104 midshell investigated by in-source laser spectroscopy. Phys. Rev. Lett. 98, 112502 (2007).
Baxter, A. M. et al. Spectroscopy of 186Pb with mass identification. Phys. Rev. C 48, R2140–R2143 (1993).
Heese, J. et al. Evidence for low-lying prolate bands in 188Pb and 186Pb. Phys. Lett. B 302, 390–395 (1993).
Reviol, W. et al. Spectroscopy of 186Pb and 186Tl via evaporation residue detection. Phys. Rev. C 68, 054317 (2003).
Pakarinen, J. et al. Evidence for oblate structure in 186Pb. Phys. Rev. C 72, 011304 (2005).
Pakarinen, J. et al. Investigation of nuclear collectivity in the neutron mid-shell nucleus 186Pb. Phys. Rev. C 75, 014302 (2007).
May, F. R., Pashkevich, V. V. & Frauendorf, S. A prediction on the shape transitions in very neutron-deficient even-mass isotopes in the lead region. Phys. Lett. B 68, 113–116 (1977).
Nazarewicz, W. Variety of shapes in the mercury and lead isotopes. Phys. Lett. B 305, 195–201 (1993).
Tajima, N., Flocard, H., Bonche, P., Dobaczewski, J. & Heenen, P.-H. Diabatic effects in 186Pb: a generator-coordinate analysis. Nucl. Phys. A 551, 409–433 (1993).
Chasman, R. R., Egido, J. L. & Robledo, L. M. Persistence of deformed shapes in the neutron-deficient Pb region. Phys. Lett. B 513, 325–329 (2001).
Duguet, T., Bender, M., Bonche, P. & Heenen, P.-H. Shape coexistence in 186Pb: beyond-mean-field description by configuration mixing of symmetry restored wave functions. Phys. Lett. B 559, 201–206 (2003).
Fossion, R., Heyde, K., Thiamova, G. & Van Isacker, P. Intruder bands and configuration mixing in lead isotopes. Phys. Rev. C 67, 024306 (2003).
Bender, M., Bonche, P., Duguet, T. & Heenen, P.-H. Configuration mixing of angular momentum projected self-consistent mean-field states for neutron-deficient Pb isotopes. Phys. Rev. C 69, 064303 (2004).
Rodríguez-Guzmán, R. R., Egido, J. L. & Robledo, L. M. Beyond mean field description of shape coexistence in neutron-deficient Pb isotopes. Phys. Rev. C 69, 054319 (2004).
Egido, J. L., Robledo, L. M. & Rodríguez-Guzmán, R. R. Unveiling the origin of shape coexistence in lead isotopes. Phys. Rev. Lett. 93, 082502 (2004).
Nomura, K., Rodríguez-Guzmán, R., Robledo, L. M. & Shimizu, N. Shape coexistence in lead isotopes in the interacting boson model with a gogny energy density functional. Phys. Rev. C 86, 034322 (2012).
Yao, J. M., Bender, M. & Heenen, P.-H. Systematics of low-lying states of even-even nuclei in the neutron-deficient lead region from a beyond-mean-field calculation. Phys. Rev. C 87, 034322 (2013).
Pakarinen, J. et al. The SAGE spectrometer. Eur. Phys. J. A 50, 53 (2014).
Eberth, J. & Simpson, J. From Ge(Li) detectors to gamma-ray tracking arrays–50 years of gamma spectroscopy with germanium detectors. Prog. Part. Nucl. Phys. 60, 283–337 (2008).
Butler, P. A. et al. Electron spectroscopy using a multi-detector array. Nucl. Instrum. Methods A 381, 433–442 (1996).
Kankaanpää, H. et al. In-beam electron spectrometer used in conjunction with a gas-filled recoil separator. Nucl. Instrum. Methods A 534, 503–510 (2004).
Kibédi, T., Garnsworthy, A. B. & Wood, J. L. Electric monopole transitions in nuclei. Prog. Part. Nucl. Phys. 123, 103930 (2022).
Kibédi, T., Burrows, T. W., Trzhaskovskaya, M. B., Davidson, P. M. & Nestor, C. W. Evaluation of theoretical conversion coefficients using BrIcc. Nucl. Instrum. Methods A 589, 202–229 (2008).
Dracoulis, G. D. et al. Isomer bands, E0 transitions, and mixing due to shape coexistence in \({}_{82}^{188}{{{{{{{{\rm{Pb}}}}}}}}}_{106}\). Phys. Rev. C 67, 051301 (2003).
Church, E. L., Rose, M. E. & Weneser, J. Electric-monopole directional-correlation experiments. Phys. Rev. 109, 1299–1306 (1958).
Dowie, J. T. H., Kibédi, T., Eriksen, T. K. & Stuchbery, A. E. Table of electronic factors for E0 electron and electron–positron pair conversion transitions. Atomic Data Nuclear Data Tables 131, 101283 (2020).
Wood, J. L., Zganjar, E. F., De Coster, C. & Heyde, K. Electric monopole transitions from low energy excitations in nuclei. Nucl. Phys. A 651, 323–368 (1999).
Hellemans, V., De Baerdemacker, S. & Heyde, K. Configuration mixing in the neutron-deficient 186−196Pb isotopes. Phys. Rev. C 77, 064324 (2008).
Zhang, W. Q. et al. First observation of a shape isomer and a low-lying strongly-coupled prolate band in neutron-deficient semi-magic 187Pb. Phys. Lett. B 829, 137129 (2022).
Smirnova, N., Heenen, P.-H. & Neyens, G. Self-consistent approach to deformation of intruder states in neutron-deficient Pb and Po. Phys. Lett. B 569, 151–158 (2003).
Möller, P., Sierk, A. J., Bengtsson, R., Sagawa, H. & Ichikawa, T. Global calculation of nuclear shape isomers. Phys. Rev. Lett. 103, 212501 (2009).
Van de Vel, K. et al. Fine structure in the α decay of 188,192Po. Phys. Rev. C 68, 054311 (2003).
Van Duppen, P., Huyse, M. & Wood, J. L. Mixing of intruder and normal states in Pb nuclei. J. Phys. G: Nucl. Part. Phys. 16, 441–450 (1990).
Marsh, B. A. et al. Characterization of the shape-staggering effect in mercury nuclei. Nat. Phys. 14, 1163–1167 (2018).
Oros, A. M. et al. Shape coexistence in the light Po isotopes. Nucl. Phys. A 645, 107–142 (1999).
Van de Vel, K. et al. In-beam γ-ray spectroscopy of 190Po: First observation of a low-lying prolate band in Po isotopes. Eur. Phys. J. A 17, 167–171 (2003).
Papadakis, P. et al. The SPEDE spectrometer. Eur. Phys. J. A 54, 42 (2018).
Warr, N. et al. The Miniball spectrometer. Eur. Phys. J. A 49, 40 (2013).
Kadi, Y. et al. Post-accelerated beams at ISOLDE. J. Phys. G: Nucl. Part. Phys. 44, 084003 (2017).
Tang, T. L. et al. First exploration of neutron shell structure below lead and beyond n = 126. Phys. Rev. Lett. 124, 062502 (2020).
Backe, H. et al. In-beam spectroscopy of low energy conversion electrons with a recoil shadow method — a new possibility for subnanosecond lifetime measurements. Z. Phys. A 285, 159–169 (1978).
Pakarinen, J. et al. Recoil-shadow electron spectroscopy of low-lying 0+ states in 186Pb and 194Po. Proposal to the JYFL-PAC (2006).
Leino, M. et al. Gas-filled recoil separator for studies of heavy elements. Nucl. Instrum. Methods B 99, 653–656 (1995).
Page, R. D. et al. The GREAT spectrometer. Nucl. Instrum. Methods B 204, 634–637 (2003).
Paul, E. S. et al. In-beam γ-ray spectroscopy above \({}^{100}{{{{{{{\rm{Sn}}}}}}}}\) using the new technique of recoil decay tagging. Phys. Rev. C 51, 78–87 (1995).
Simon, R. S. et al. Evidence for nuclear shape coexistence in 180Hg. Z. Phys. A 325, 197–202 (1986).
Beck, F. A. EUROBALL: Large gamma ray spectrometers through european collaborations. Prog. Part. Nucl. Phys. 28, 443–461 (1992).
Wauters, J. et al. Alpha decay of 186Pb and 184Hg: The influence of mixing of 0+ states on α-decay transition probabilities. Phys. Rev. C 50, 2768–2773 (1994).
Lazarus, I. et al. The GREAT triggerless total data readout method. IEEE Trans. Nucl. Sci. 48, 567–569 (2001).
Rahkila, P. Grain—a java data analysis system for total data readout. Nucl. Instrum. Methods A 595, 637–642 (2008).
Brun, R. & Rademakers, F. ROOT — an object oriented data analysis framework. Nucl. Instrum. Methods A 389, 81–86 (1997).