Blog

Quantum chemical insights into hexaboride electronic structures: correlations within the boron p-orbital subsystem

11:33 31 agosto in Artículos por Website
0


  • Inosov, D. Rare-Earth Borides https://doi.org/10.1201/9781003146483 (Jenny Stanford Publishing, 2021, ISBN 9789814877565).

  • Cahill, J. T. & Graeve, O. A. Hexaborides: a review of structure, synthesis and processing. J. Mater. Res. Technol. 8, 6321–6335 (2019).

    Article 

    Google Scholar
     

  • Denlinger, J. D. et al. Bulk band gaps in divalent hexaborides. Phys. Rev. Lett. 89, 157601 (2002).

    ADS 
    Article 

    Google Scholar
     

  • Lortz, R. et al. Superconductivity mediated by a soft phonon mode: Specific heat, resistivity, thermal expansion, and magnetization of YB6. Phys. Rev. B 73, 024512 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Swanson, L. W., Gesley, M. A. & Davis, P. R. Crystallographic dependence of the work function and volatility of LaB6. Surf. Sci. 107, 263 (1981).

    ADS 
    Article 

    Google Scholar
     

  • Gavilano, J. L. et al. Low temperature nuclear magnetic resonance studies of EuB6. Phys. Rev. Lett. 81, 25 (1998).

    Article 

    Google Scholar
     

  • Cameron, A. S., Friemel, G. & Inosov, D. S. Multipolar phases and magnetically hidden order: review of the heavy-fermion compound Ce1−xLaxB6. Rep. Prog. Phys. 79, 066502 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Thalmeier, P., Akbari, A. & Shiina, R. Multipolar order and excitations in rare-earth boride Kondo systems. In Rare-Earth Borides (ed. Inosov, D.) Ch. 8 (Jenny Stanford Publishing, 2021).

  • Li, L., Sun, K., Kurdak, C. & Allen, J. W. Emergent mystery in the Kondo insulator samarium hexaboride. Nat. Rev. Phys. 2, 463–479 (2020).

    Article 

    Google Scholar
     

  • Hasegawa, A. & Yanase, A. Electronic structure of CaB6. J. Phys. C: Solid State Phys. 12, 5431 (1979).

    ADS 
    Article 

    Google Scholar
     

  • Massidda, S., Continenza, A., Pascale, T. M. D. & Monnier, R. Electronic structure of divalent hexaborides. Z. Phys. B 102, 83–89 (1997).

    ADS 
    Article 

    Google Scholar
     

  • Rodriguez, C. O., Weht, R. & Pickett, W. E. Electronic fine structure in the electron-hole plasma in SrB6. Phys. Rev. Lett. 84, 3903 (2000).

    ADS 
    Article 

    Google Scholar
     

  • Kino, H., Aryasetiawan, F., Terakura, K. & Miyake, T. Abnormal quasiparticle shifts in CaB6. Phys. Rev. B 66, 121103(R) (2002).

    ADS 
    Article 

    Google Scholar
     

  • Kino, H. et al. GW quasiparticle band structure of CaB6. J. Phys. Chem. Solids 63, 1595–1597 (2002).

    ADS 
    Article 

    Google Scholar
     

  • Neupane, M. et al. Non-Kondo-like electronic structure in the correlated rare-earth hexaboride YbB6. Phys. Rev. Lett. 114, 016403 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Zhang, T. et al. Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation. Chin. Phys. B 29, 017304 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Kang, C.-J. et al. Electronic structure of YbB6: Is it a topological insulator or not? Phys. Rev. Lett. 116, 116401 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Sundermann, M. et al. 4 f crystal field ground state of the strongly correlated topological insulator SmB6. Phys. Rev. Lett. 120, 016402 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Amorese, A. et al. Resonant inelastic x-ray scattering investigation of the crystal-field splitting of Sm3+ in SmB6. Phys. Rev. B 100, 241107(R) (2019).

    ADS 
    Article 

    Google Scholar
     

  • Denlinger, J. D., Gweon, G.-H., Allen, J. W., Bianchi, A. D. & Fisk, Z. Bulk band gaps in divalent hexaborides: A soft x-ray emission study. Surf. Rev. Lett. 09, 1309–1313 (2002).

    ADS 
    Article 

    Google Scholar
     

  • Hozoi, L., Laad, M. S. & Fulde, P. Fermiology of cuprates from first principles: From small pockets to the Luttinger Fermi surface. Phys. Rev. B 78, 165107 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Hozoi, L., Birkenheuer, U., Fulde, P., Mitrushchenkov, A. O. & Stoll, H. Ab initio wave function-based methods for excited states in solids: correlation corrections to the band structure of ionic oxides. Phys. Rev. B 76, 085109 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Stoyanova, A., Mitrushchenkov, A. O., Hozoi, L., Stoll, H. & Fulde, P. Electron correlation effects in diamond: A wave-function quantum-chemistry study of the quasiparticle band structure. Phys. Rev. B 89, 235121 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Tromp, H. J., van Gelderen, P., Kelly, P. J., Brocks, G. & Bobbert, P. A. CaB6: A new semiconducting material for spin electronics. Phys. Rev. Lett. 87, 016401 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Helgaker, T., Jorgensen, P. & Olsen, J. Molecular Electronic-Structure Theory (Wiley VCH, Chichester, 2000).

  • Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. e1606 https://doi.org/10.1002/wcms.1606 (2022).

  • Janssen, G. J. M. & Nieuwpoort, W. C. Band gap in NiO: A cluster study. Phys. Rev. B 38, 3449 (1988).

    ADS 
    Article 

    Google Scholar
     

  • Martin, R. L. Cluster studies of La2CuO4: A mapping onto the Pariser-Parr-Pople (PPP) model. J. Chem. Phys. 98, 8691 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Bogdanov, N. A., Manni, G. L., Sharma, S., Gunnarsson, O. & Alavi, A. Enhancement of superexchange due to synergetic breathing and hopping in corner-sharing cuprates. Nat. Phys. 18, 190 (2022).

    Article 

    Google Scholar
     

  • Wehling, T. O. et al. Strength of effective Coulomb interactions in graphene and graphite. Phys. Rev. Lett. 106, 236805 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Craco, L., da Silva Pereira, T. A. & Leoni, S. Electronic structure and thermoelectric transport of black phosphorus. Phys. Rev. B 96, 075118 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Jensen, F. Introduction to Computational Chemistry, 2nd ed. (Wiley & Sons Ltd., 2007).

  • Hozoi, L., Birkenheuer, U., Stoll, H. & Fulde, P. Spin-state transition and spin-polaron physics in cobalt oxide perovskites: ab initio approach based on quantum chemical methods. N. J. Phys. 11, 023023 (2009).

    Article 

    Google Scholar
     

  • Nanba, T. et al. Valency of YbB6. Phys. B Condens. Matter 186-188, 557–559 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Gavilano, J. et al. NMR studies of YbB6. Phys. B: Condens. Matter 329-333, 570 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Zhou, Y. et al. Pressure-induced quantum phase transitions in a YbB6 single crystal. Phys. Rev. B 92, 241118 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Majumdar, D. & Balasubramanian, K. Theoretical study of the electronic states of Nb4, Nb5 clusters and their anions (Nb4, Nb5). J. Chem. Phys. 121, 4014 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Sharma, S., Sivalingam, K., Neese, F. & Chan, G. K.-L. Low-energy spectrum of iron–sulfur clusters directly from many-particle quantum mechanics. Nat. Chem. 6, 927–933 (2014).

    Article 

    Google Scholar
     

  • Presti, D., Stoneburner, S. J., Truhlar, D. G. & Gagliardi, L. Full correlation in a multiconfigurational study of bimetallic clusters: Restricted active space pair-density functional theory study of [2Fe–2 S] systems. J. Phys. Chem. C. 123, 11899–11907 (2019).

    Article 

    Google Scholar
     

  • Hozoi, L., Eldeeb, M. S. & Rößler, U. K. V4 tetrahedral units in AV4X8 lacunar spinels: Near degeneracy, charge fluctuations, and configurational mixing within a valence space of up to 21 d orbitals. Phys. Rev. Res. 2, 022017 (2020).

    Article 

    Google Scholar
     

  • Petersen, T. et al. How correlations and Spin–Orbit coupling work within extended orbitals of transition-metal tetrahedra of 4d/5d Lacunar Spinels. J. Phys. Chem. Lett. 13, 1681–1686 (2022).

    Article 

    Google Scholar
     

  • Fulde, P. Wavefunctions of macroscopic electron systems. J. Chem. Phys. 150, 030901 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Derenzo, S. E., Klintenberg, M. K. & Weber, M. J. Determining point charge arrays that produce accurate ionic crystal fields for atomic cluster calculations. J. Chem. Phys. 112, 2074 (2000).

    ADS 
    Article 

    Google Scholar
     

  • Klintenberg, M., Derenzo, S. & Weber, M. Accurate crystal fields for embedded cluster calculations. Comp. Phys. Commun. 131, 120–128 (2000).

    ADS 
    MATH 
    Article 

    Google Scholar
     

  • Schmitt, K., Stückl, C., Ripplinger, H. & Albert, B. Crystal and electronic structure of BaB6 in comparison with CaB6 and molecular [B6H6]2−. Solid State Sci. 3, 321–327 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Lee, B. & Wang, L.-W. Electronic structure of calcium hexaborides. Appl. Phys. Lett. 87, 262509 (2005).

    ADS 
    Article 

    Google Scholar
     

  • Schmidt, K. M., Buettner, A. B., Graeve, O. A. & Vasquez, V. R. Interatomic pair potentials from DFT and molecular dynamics for Ca, Ba, and Sr hexaborides. J. Mater. Chem. C. 3, 8649–8658 (2015).

    Article 

    Google Scholar
     

  • Jun, J., Jiang, B. & Lemin, L. Study on band structure of YbB6 and analysis of its optical conductivity spectrum. J. Rare Earth 25, 654–664 (2007).

    Article 

    Google Scholar
     

  • Kaupp, M., Schleyer, P. V. R., Stoll, H. & Preuss, H. Pseudopotential approaches to Ca, Sr, and Ba hydrides. Why are some alkaline earth MX2 compounds bent? J. Chem. Phys. 94, 1360 (1991).

    ADS 
    Article 

    Google Scholar
     

  • Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys. 90, 1730 (1989).

    ADS 
    Article 

    Google Scholar
     

  • Bergner, A., Dolg, M., Küchle, W., Stoll, H. & Preus, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 80, 1431–1441 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007 (1989).

    ADS 
    Article 

    Google Scholar
     



  • Source link