Blog

Metastable oscillatory modes emerge from synchronization in the brain spacetime connectome

11:31 15 julio in Artículos por Website
0


  • Uhlhaas, P. J. & Singer, W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168 (2006).

    Article 

    Google Scholar
     

  • Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716 (2001).

    Article 

    Google Scholar
     

  • Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Singer, W. Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55, 349–374 (1993).

    Article 

    Google Scholar
     

  • Buzsaki, G. Rhythms of the Brain. (Oxford University Press, 2006).

  • Baker, A. P. et al. Fast transient networks in spontaneous human brain activity. eLife 3, e01867 (2014).

    Article 

    Google Scholar
     

  • Vidaurre, D. et al. Spectrally resolved fast transient brain states in electrophysiological data. NeuroImage 126, 81–95 (2016).

    Article 

    Google Scholar
     

  • Michel, C. M. & Koenig, T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review. NeuroImage 180, 577–593 (2018).

    Article 

    Google Scholar
     

  • Jensen, O., Spaak, E. & Zumer, J. M. In Magnetoencephalography 359–403 (Springer, 2014).

  • Sherman, M. A. et al. Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice. Proc. Natl Acad. Sci. 113, E4885–E4894 (2016).

    Article 

    Google Scholar
     

  • Varela, F., Lachaux, J.-P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229 (2001).

    Article 

    Google Scholar
     

  • Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M. & Engel, A. K. Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat. Neurosci. 15, 884–890 (2012).

    Article 

    Google Scholar
     

  • Palva, S. & Palva, J. M. Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cogn. Sci. 16, 219–230 (2012).

    Article 

    Google Scholar
     

  • Traub, R. D., Whittington, M. A., Stanford, I. M. & Jefferys, J. G. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996).

    ADS 
    Article 

    Google Scholar
     

  • Schnitzler, A. & Gross, J. Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 6, 285–296 (2005).

    Article 

    Google Scholar
     

  • Von Stein, A. & Sarnthein, J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 38, 301–313 (2000).

    Article 

    Google Scholar
     

  • Nunez, P. L. & Srinivasan, R. Electric fields of the brain: the neurophysics of EEG. (Oxford University Press, 2006).

  • Bhattacharya, S., Cauchois, M. B., Iglesias, P. A. & Chen, Z. S. The impact of a closed-loop thalamocortical model on the spatiotemporal dynamics of cortical and thalamic traveling waves. Sci. Rep. 11, 1–19 (2021).

    Article 

    Google Scholar
     

  • Freyer, F. et al. Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci.: Off. J. Soc. Neurosci. 31, 6353–6361 (2011).

    Article 

    Google Scholar
     

  • Cabral, J. et al. Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. NeuroImage 90, 423–435 (2014).

    Article 

    Google Scholar
     

  • Llinás, R. R., Ribary, U., Jeanmonod, D., Kronberg, E. & Mitra, P. P. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl Acad. Sci. 96, 15222–15227 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Vidaurre, D. et al. Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nat. Commun. 9, 1–13 (2018).

    Article 

    Google Scholar
     

  • O’Neill, G. C. et al. Dynamics of large-scale electrophysiological networks: a technical review. NeuroImage 180, 559–576 (2018).

    Article 

    Google Scholar
     

  • Friston, K. J. Transients, metastability, and neuronal dynamics. NeuroImage 5, 164–171 (1997).

    Article 

    Google Scholar
     

  • Niebur, E., Schuster, H. G. & Kammen, D. M. Collective frequencies and metastability in networks of limit-cycle oscillators with time delay. Phys. Rev. Lett. 67, 2753–2756 (1991).

    ADS 
    Article 

    Google Scholar
     

  • Atay, F. M., Jost, J. & Wende, A. Delays, connection topology, and synchronization of coupled chaotic maps. Phys. Rev. Lett. 92, 144101 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Sporns, O., Tononi, G. & Kotter, R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).

    ADS 
    Article 

    Google Scholar
     

  • Honey, C. J., Kotter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Ghosh, A., Rho, Y., McIntosh, A. R., Kotter, R. & Jirsa, V. K. Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn. Neurodyn. 2, 115–120 (2008).

    Article 

    Google Scholar
     

  • Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O. & Kotter, R. Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl Acad. Sci. USA 106, 10302–10307 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Cabral, J., Hugues, E., Sporns, O. & Deco, G. Role of local network oscillations in resting-state functional connectivity. NeuroImage 57, 130–139 (2011).

    Article 

    Google Scholar
     

  • Cabral, J., Kringelbach, M. & Deco, G. Functional Connectivity dynamically evolves on multiple time-scales over a static Structural Connectome: Models and Mechanisms. NeuroImage 160, 84–96 (2017).

    Article 

    Google Scholar
     

  • Deco, G. & Kringelbach, M. L. Turbulent-like dynamics in the human brain. Cell Rep. 33, 108471 (2020).

    Article 

    Google Scholar
     

  • Deco, G. et al. Single or Multi-Frequency Generators in on-going brain activity: a mechanistic whole-brain model of empirical MEG data. NeuroImage 152, 538–550 (2017).

    Article 

    Google Scholar
     

  • Deco, G., Kringelbach, M. L., Jirsa, V. K. & Ritter, P. The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Sci. Rep. 7, 3095 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Tewarie, P. et al. How do spatially distinct frequency specific MEG networks emerge from one underlying structural connectome? The role of the structural eigenmodes. NeuroImage 186, 211–220 (2019).

    Article 

    Google Scholar
     

  • Roberts, J. A. et al. Metastable brain waves. Nat. Commun. 10, 1–17 (2019).

    Article 

    Google Scholar
     

  • Ponce-Alvarez, A. et al. Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity. PLoS Comput. Biol. 11, e1004100 (2015).

    Article 

    Google Scholar
     

  • Engel, A. K., Gerloff, C., Hilgetag, C. C. & Nolte, G. Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron 80, 867–886 (2013).

    Article 

    Google Scholar
     

  • Cocchi, L., Gollo, L. L., Zalesky, A. & Breakspear, M. Criticality in the brain: a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158, 132–152 (2017).

    Article 

    Google Scholar
     

  • Deco, G. et al. Rare long-range cortical connections enhance human information processing. Curr. Biol. 31, 4436–4448. e4435 (2021).

    MathSciNet 
    Article 

    Google Scholar
     

  • Brookes, M. J. et al. Measuring functional connectivity using MEG: methodology and comparison with fcMRI. NeuroImage 56, 1082–1104 (2011).

    Article 

    Google Scholar
     

  • Buhl, E. H., Tamas, G. & Fisahn, A. Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J. Physiol. 513, 117–126 (1998).

    Article 

    Google Scholar
     

  • Sanchez-Vives, M. V. & McCormick, D. A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027 (2000).

    Article 

    Google Scholar
     

  • Selivanov, A. A. et al. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E 85, 016201 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Daffertshofer, A. & van Wijk, B. C. On the Influence of Amplitude on the Connectivity between Phases. Front. Neuroinform. 5, 6 (2011).

    Article 

    Google Scholar
     

  • Ashwin, P., Coombes, S. & Nicks, R. Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6, 1–92 (2016).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Strogatz, S. H. & Mirollo, R. E. Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613–635 (1991).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Petkoski, S., Iatsenko, D., Basnarkov, L. & Stefanovska, A. Mean-field and mean-ensemble frequencies of a system of coupled oscillators. Phys. Rev. E 87, 032908 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Samanta, H. S., Bhattacharjee, J. K., Bhattacharyay, A. & Chakraborty, S. On noise induced poincaré–andronov–Hopf bifurcation. Chaos: Interdiscip. J. Nonlinear Sci. 24, 043122 (2014).

    MATH 
    Article 

    Google Scholar
     

  • Lee, W. S., Ott, E. & Antonsen, T. M. Large coupled oscillator systems with heterogeneous interaction delays. Phys. Rev. Lett. 103, 044101 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Article 

    Google Scholar
     

  • Pikovsky, A., Kurths, J., Rosenblum, M. & Kurths, J. Synchronization: a universal concept in nonlinear sciences. (Cambridge university press, 2003).

  • Strogatz, S. Sync: The emerging science of spontaneous order. (Penguin UK, 2004).

  • Winfree, A. T. Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967).

    ADS 
    Article 

    Google Scholar
     

  • Haken, H. Information and Self-Organization – A Macroscopic approach to Complex Systems. (Springer, 1988).

  • Mirollo, R. E. & Strogatz, S. H. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50, 1645–1662 (1990).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Strogatz, S. H. & Stewart, I. Coupled oscillators and biological synchronization. Sci. Am. 269, 102–109 (1993).

    Article 

    Google Scholar
     

  • Daffertshofer, A., Ton, R., Kringelbach, M. L., Woolrich, M. & Deco, G. Distinct criticality of phase and amplitude dynamics in the resting brain. NeuroImage 180, 442–447 (2018).

    Article 

    Google Scholar
     

  • Siems, M. & Siegel, M. Dissociated neuronal phase-and amplitude-coupling patterns in the human brain. NeuroImage 209, 116538 (2020).

    Article 

    Google Scholar
     

  • Deco, G. et al. Single or multiple frequency generators in on-going brain activity: a mechanistic whole-brain model of empirical MEG data. NeuroImage 152, 538–550 (2017).

    Article 

    Google Scholar
     

  • Yeung, M. K. S. & Strogatz, S. H. Time Delay in the Kuramoto Model of Coupled Oscillators. Phys. Rev. Lett. 82, 648–651 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Earl, M. G. & Strogatz, S. H. Synchronization in oscillator networks with delayed coupling: a stability criterion. Phys. Rev. E 67, 036204 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Wildie, M. & Shanahan, M. Metastability and chimera states in modular delay and pulse-coupled oscillator networks. Chaos 22, 043131 (2012).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Bick, C., Goodfellow, M., Laing, C. R. & Martens, E. A. Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review. J. Math. Neurosci. 10, 1–43 (2020).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Izhikevich, E. M. & Edelman, G. M. Large-scale model of mammalian thalamocortical systems. Proc. Natl Acad. Sci. USA 105, 3593–3598 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Tononi, G., Sporns, O. & Edelman, G. M. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl Acad. Sci. 91, 5033–5037 (1994).

    ADS 
    Article 

    Google Scholar
     

  • Tognoli, E. & Kelso, J. A. The metastable brain. Neuron 81, 35–48 (2014).

    Article 

    Google Scholar
     

  • Cabral, J., Kringelbach, M. L. & Deco, G. Functional graph alterations in schizophrenia: a result from a global anatomic decoupling. Pharmacopsychiatry 45(Suppl 1), S57–S64 (2012).


    Google Scholar
     

  • Cabral, J., Hugues, E., Kringelbach, M. L. & Deco, G. Modeling the outcome of structural disconnection on resting-state functional connectivity. NeuroImage 62, 1342–1353 (2012).

    Article 

    Google Scholar
     

  • Schartner, M. M., Carhart-Harris, R. L., Barrett, A. B., Seth, A. K. & Muthukumaraswamy, S. D. Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Sci. Rep. 7, 46421 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Carhart-Harris, R. L. et al. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 8, 20 (2014).

    Article 

    Google Scholar
     

  • Goriely, A., Kuhl, E. & Bick, C. Neuronal oscillations on evolving networks: dynamics, damage, degradation, decline, dementia, and death. Phys. Rev. Lett. 125, 128102 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Bick, C. Heteroclinic switching between chimeras. Phys. Rev. E 97, 050201 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Ansmann, G., Lehnertz, K. & Feudel, U. Self-induced switchings between multiple space-time patterns on complex networks of excitable units. Phys. Rev. X 6, 011030 (2016).


    Google Scholar
     

  • Rabinovich, M. I., Simmons, A. N. & Varona, P. Dynamical bridge between brain and mind. Trends Cogn. Sci. 19, 453–461 (2015).

    Article 

    Google Scholar
     

  • Roberts, J. A. et al. Metastable brain waves. Nat. Commun. 10, 1056 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Atay, F. M. Distributed delays facilitate amplitude death of coupled oscillators. Phys. Rev. Lett. 91, 094101 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Ritter, P., Moosmann, M. & Villringer, A. Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI‐BOLD signal in primary somatosensory and motor cortex. Hum. Brain Mapp. 30, 1168–1187 (2009).

    Article 

    Google Scholar
     

  • Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. NeuroImage 80, 62–79 (2013).

    Article 

    Google Scholar
     

  • Horn, A. et al. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage 184, 293–316 (2019).

    Article 

    Google Scholar
     

  • Ashburner, J. A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–113 (2007).

    Article 

    Google Scholar
     

  • Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289 (2002).

    Article 

    Google Scholar
     

  • Andronov, A. A., Vitt, A. A. & Khakin, S. E. Theory of oscillators. (Dover Mathematics,1987).

  • Aranson, I. S. & Kramer, L. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74, 99–143 (2002).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Olinger, D. J. A low‐dimensional model for chaos in open fluid flows. Phys. Fluids A: Fluid Dyn. 5, 1947–1951 (1993).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Shanahan, M. Metastable chimera states in community-structured oscillator networks. Chaos 20, 013108 (2010).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Sethia, G. C., Sen, A. & Atay, F. M. Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett. 100, 144102 (2008).

    ADS 
    Article 

    Google Scholar
     



  • Source link