Blog

Hole doping in a negative charge transfer insulator

11:31 30 agosto in Artículos por Website
0


  • Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    ADS 
    Article 

    Google Scholar
     

  • Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    ADS 
    Article 

    Google Scholar
     

  • Nimkar, S., Sarma, D. D., Krishnamurthy, H. R. & Ramasesha, S. Mean-field results of the multiple-band extended hubbard model for the square-planar CuO2 lattice. Phys. Rev. B 48, 7355–7363 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Barman, S. R., Chainani, A. & Sarma, D. D. Covalency-driven unusual metal-insulator transition in nickelates. Phys. Rev. B 49, 8475–8478 (1994).

    ADS 
    Article 

    Google Scholar
     

  • Maiti, K., Sarma, D. D., Mizokawa, T. & Fujimori, A. Electronic structure of one-dimensional cuprates. Phys. Rev. B 57, 1572–1578 (1998).

    ADS 
    Article 

    Google Scholar
     

  • Matsuno, J. et al. Different routes to charge disproportionation in perovskite-type Fe oxides. Phys. Rev. B 66, 193103 (2002).

    ADS 
    Article 

    Google Scholar
     

  • Medarde, M. L. Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth). J. Phys.: Condens. Matter 9, 1679 (1997).

    ADS 

    Google Scholar
     

  • Catalan, G. Progress in perovskite nickelate research. Phase Transit. 81, 729–749 (2008).

    Article 

    Google Scholar
     

  • Middey, S. et al. Physics of ultrathin films and heterostructures of rare-earth nickelates. Annu. Rev. Mater. Res. 46, 305–334 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Catalano, S. et al. Rare-earth nickelates RNiO3: thin films and heterostructures. Rep. Prog. Phys. 81, 046501 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Chakhalian, J. & Middey, S. Perspective—emergent phases in rare earth nickelate heterostructure. ECS J. Solid State Sci. Technol. 11, 053004 (2022).

    ADS 
    Article 

    Google Scholar
     

  • Bisogni, V. et al. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates. Nat. Commun. 7, 13017 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Mizokawa, T., Khomskii, D. I. & Sawatzky, G. A. Spin and charge ordering in self-doped mott insulators. Phys. Rev. B 61, 11263–11266 (2000).

    ADS 
    Article 

    Google Scholar
     

  • Park, H., Millis, A. J. & Marianetti, C. A. Site-selective mott transition in rare-earth-element nickelates. Phys. Rev. Lett. 109, 156402 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Johnston, S., Mukherjee, A., Elfimov, I., Berciu, M. & Sawatzky, G. A. Charge disproportionation without charge transfer in the rare-earth-element nickelates as a possible mechanism for the metal-insulator transition. Phys. Rev. Lett. 112, 106404 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Haule, K. & Pascut, G. L. Mott transition and magnetism in rare earth nickelates and its fingerprint on the x-ray scattering. Sci. Rep. 7, 2045–2322 (2017).

    Article 

    Google Scholar
     

  • Middey, S. et al. Disentangled cooperative orderings in artificial rare-earth nickelates. Phys. Rev. Lett. 120, 156801 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Green, R. J., Haverkort, M. W. & Sawatzky, G. A. Bond disproportionation and dynamical charge fluctuations in the perovskite rare-earth nickelates. Phys. Rev. B 94, 195127 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Mandal, B. et al. The driving force for charge ordering in rare earth nickelates. arXiv https://doi.org/10.48550/arXiv.1701.06819 (2017).

  • Serrano-Sánchez, F., Martínez, J. L., Fauth, F. & Alonso, J. A. On the lack of monoclinic distortion in the insulating regime of EuNiO3 and GdNiO3 perovskites by high-angular resolution synchrotron x-ray diffraction: a comparison with YNiO3. Dalton Trans. 50, 7085–7093 (2021).

    Article 

    Google Scholar
     

  • Hepting, M. et al. Tunable charge and spin order in PrNiO3 thin films and superlattices. Phys. Rev. Lett. 113, 227206 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Stewart, M. K., Liu, J., Kareev, M., Chakhalian, J. & Basov, D. N. Mott physics near the insulator-to-metal transition in NdNiO3. Phys. Rev. Lett. 107, 176401 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Ojha, S. K. et al. Anomalous electron transport in epitaxial NdNiO3 films. Phys. Rev. B 99, 235153 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Stoica, V. et al. Disentangling electronic and magnetic order in NdNiO3 at ultrafast timescales. arXiv https://doi.org/10.48550/arXiv.2004.03694 (2020).

  • Georgescu, A. B., Peil, O. E., Disa, A. S., Georges, A. & Millis, A. J. Disentangling lattice and electronic contributions to the metal–insulator transition from bulk vs. layer confined RNiO3. Proc. Natl Acad. Sci. USA 116, 14434–14439 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Cheong, S.-W., Hwang, H., Batlogg, B., Cooper, A. & Canfield, P. Electron-hole doping of the metal-insulator transition compound RENiO3. Phys. B: Condens. Matter 194, 1087–1088 (1994).

    ADS 
    Article 

    Google Scholar
     

  • García-Muñoz, J., Suaaidi, M., Martínez-Lope, M. & Alonso, J. Influence of carrier injection on the metal-insulator transition in electron-and hole-doped R1- xAxNiO3 perovskites. Phys. Rev. B 52, 13563 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Xiang, P.-H. et al. Room temperature mott metal-insulator transition and its systematic control in Sm1- xCaxNiO3 thin films. Appl. Phys. Lett. 97, 032114 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Jiang, M., Berciu, M. & Sawatzky, G. A. Critical nature of the Ni spin state in doped NdNiO2. Phys. Rev. Lett. 124, 207004 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Goodge, B. H. et al. Doping evolution of the mott–hubbard landscape in infinite-layer nickelates. Proc. Natl Acad. Sci. USA 118, e2007683118 (2021).

    Article 

    Google Scholar
     

  • Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Rossi, M. et al. Orbital and spin character of doped carriers in infinite-layer nickelates. Phys. Rev. B 104, L220505 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Yamanouchi, C., Mizuguchi, K. & Sasaki, W. Electric conduction in phosphorus doped silicon at low temperatures. J. Phys. Soc. Jpn. 22, 859–864 (1967).

    ADS 
    Article 

    Google Scholar
     

  • Chainani, A., Mathew, M. & Sarma, D. D. Electron-spectroscopy study of the semiconductor-metal transition in La1−xSrxCoO3. Phys. Rev. B 46, 9976–9983 (1992).

    ADS 
    Article 

    Google Scholar
     

  • Chainani, A., Mathew, M. & Sarma, D. D. Electron spectroscopic investigation of the semiconductor-metal transition in La1−xSrxMnO3. Phys. Rev. B 47, 15397–15403 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Katsufuji, T., Taguchi, Y. & Tokura, Y. Transport and magnetic properties of a mott-hubbard system whose bandwidth and band filling are both controllable: R1−xCaxTiO3+y/2. Phys. Rev. B 56, 10145–10153 (1997).

    ADS 
    Article 

    Google Scholar
     

  • Nikulin, I., Novojilov, M., Kaul, A., Mudretsova, S. & Kondrashov, S. Oxygen nonstoichiometry of NdNiO3-δ and SmNiO3-δ. Mater. Res. Bull. 39, 775–791 (2004).

    Article 

    Google Scholar
     

  • Liu, J. et al. Tuning the electronic structure of LaNiO3 through alloying with strontium to enhance oxygen evolution activity. Adv. Sci. 6, 1901073 (2019).

    Article 

    Google Scholar
     

  • Tan, Z., Heald, S. M., Cheong, S.-W., Cooper, A. S. & Moodenbaugh, A. R. Nature of hole doping in Nd2NiO4 and La2NiO4: comparison with La2CuO4. Phys. Rev. B 47, 12365–12368 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Middey, S. et al. Phase engineering of rare earth nickelates by digital synthesis. Appl. Phys. Lett. 113, 081602 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Liu, J. et al. Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films. Nat. Commun. 4, 2714 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Mikheev, E. et al. Tuning bad metal and non-fermi liquid behavior in a mott material: rare-earth nickelate thin films. Sci. Adv. 1, e1500797 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Patel, R. K. et al. Epitaxial stabilization of ultra thin films of high entropy perovskite. Appl. Phys. Lett. 116, 071601 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Alsaqqa, A. M. et al. Phase coexistence and dynamical behavior in NdNiO3 ultrathin films. Phys. Rev. B 95, 125132 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Patel, R. K. et al. Emergent behavior of LaNiO3 in short-periodic nickelate superlattices. APL Mater. 8, 041113 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Gou, G., Grinberg, I., Rappe, A. M. & Rondinelli, J. M. Lattice normal modes and electronic properties of the correlated metal LaNiO3. Phys. Rev. B 84, 144101 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Hampel, A. & Ederer, C. Interplay between breathing mode distortion and magnetic order in rare-earth nickelates RNiO3 within DFT + U. Phys. Rev. B 96, 165130 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Iglesias, L., Bibes, M. & Varignon, J. First-principles study of electron and hole doping effects in perovskite nickelates. Phys. Rev. B 104, 035123 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Mahadevan, P., Terakura, K. & Sarma, D. D. Spin, charge, and orbital ordering in La0.5Sr1.5MnO4. Phys. Rev. Lett. 87, 066404 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Wang, L. et al. Hole-trapping-induced stabilization of Ni 4+ in SrNiO3 /LaFeO3 superlattices. Adv. Mater. 32, 2005003 (2020).

    Article 

    Google Scholar
     

  • Liu, J. et al. Quantum confinement of mott electrons in ultrathin LaNiO3/LaAlO3 superlattices. Phys. Rev. B 83, 161102 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Freeland, J. W., van Veenendaal, M. & Chakhalian, J. Evolution of electronic structure across the rare-earth RNiO3 series. J. Electron Spectrosc. Relat. Phenom. 208, 56–62 (2016).

    Article 

    Google Scholar
     

  • Meyers, D. et al. Strain-modulated mott transition in EuNiO3 ultrathin films. Phys. Rev. B 88, 075116 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Singh, R. S. & Maiti, K. Manifestation of screening effects and A−O covalency in the core level spectra of a site elements in the ABO3 structure of Ca1−xSrxRuO3. Phys. Rev. B 76, 085102 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Staub, U. et al. Direct observation of charge order in an epitaxial NdNiO3 film. Phys. Rev. Lett. 88, 126402 (2002).

    ADS 
    Article 

    Google Scholar
     

  • Lorenzo, J. E. et al. Resonant x-ray scattering experiments on electronic orderings in NdNiO3 single crystals. Phys. Rev. B 71, 045128 (2005).

    ADS 
    Article 

    Google Scholar
     

  • Scagnoli, V. et al. Charge disproportionation and search for orbital ordering in NdNiO3 by use of resonant x-ray diffraction. Phys. Rev. B 72, 155111 (2005).

    ADS 
    Article 

    Google Scholar
     

  • Lu, Y. et al. Quantitative determination of bond order and lattice distortions in nickel oxide heterostructures by resonant x-ray scattering. Phys. Rev. B 93, 165121 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Meyers, D. et al. Charge order and antiferromagnetism in epitaxial ultrathin films of EuNiO3. Phys. Rev. B 92, 235126 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Kim, J.-W. et al. Direct evidence of the competing nature between electronic and lattice breathing order in rare-earth nickelates. Phys. Rev. Lett. 124, 127601 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Mercy, A., Bieder, J., Íñiguez, J. & Ghosez, P. Structurally triggered metal-insulator transition in rare-earth nickelates. Nat. Commun. 8, 1677 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Hampel, A., Liu, P., Franchini, C. & Ederer, C. Energetics of the coupled electronic–structural transition in the rare-earth nickelates. npj Quantum Mater. 4, 5 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Peil, O. E., Hampel, A., Ederer, C. & Georges, A. Mechanism and control parameters of the coupled structural and metal-insulator transition in nickelates. Phys. Rev. B 99, 245127 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Georgescu, A. B. & Millis, A. J. Quantifying the role of the lattice in metal–insulator phase transitions. Commun. Phys. 5, 135 (2022).

    Article 

    Google Scholar
     

  • Scagnoli, V. et al. Role of magnetic and orbital ordering at the metal-insulator transition in NdNiO3. Phys. Rev. B 73, 100409 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 
    Article 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    ADS 
    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    Article 

    Google Scholar
     

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    ADS 
    Article 

    Google Scholar
     

  • García-Muñoz, J. L., Aranda, M. A. G., Alonso, J. A. & Martínez-Lope, M. J. Structure and charge order in the antiferromagnetic band-insulating phase of NdNiO3. Phys. Rev. B 79, 134432 (2009).

    ADS 
    Article 

    Google Scholar
     

  • García-Muñoz, J. L., Suaaidi, M., Martínez-Lope, M. J. & Alonso, J. A. Influence of carrier injection on the metal-insulator transition in electron- and hole-doped R1−xAxNiO3 perovskites. Phys. Rev. B 52, 13563–13569 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Monkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     



  • Source link