Blog

Dipolar spin-waves and tunable band gap at the Dirac points in the 2D magnet ErBr3

11:31 19 julio in Artículos por Website
0


  • Parkin, S., Jiang, X., Kaiser, C., Panchula, A. & Samant, M. Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661 (2003).

    Article 

    Google Scholar
     

  • Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).

    Article 

    Google Scholar
     

  • Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D: Appl. Phys. 43, 264001 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453 (2015).

    Article 

    Google Scholar
     

  • Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419 (2013).

    Article 

    Google Scholar
     

  • Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Xing, W. et al. Magnon transport in quasi two-dimensional van der Waals antiferromagnets. Phys. Rev. X 9, 011026 (2019).


    Google Scholar
     

  • Zhang, Y. et al. MnPS3 spin-flop transition-induced anomalous Hall effect in graphite flake via van der Waals proximity coupling. Nanoscale 12, 23266 (2020).

    Article 

    Google Scholar
     

  • Wang, X. S., Zhang, H. W. & Wang, X. R. Topological magnonics: a paradigm for spin-wave manipulation and device design. Phys. Rev. Appl. 9, 024029 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Mook, A., Plekhanov, K., Klinovaja, J. & Loss, D. Interaction-stabilized topological magnon insulator in ferromagnets. Phys. Rev. X 11, 021061 (2021).


    Google Scholar
     

  • Mook, A., Henk, J. & Mertig, I. Edge states in topological magnon insulators. Phys. Rev. B 90, 024412 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960).

    ADS 
    Article 

    Google Scholar
     

  • Onose, Y. et al. Observation of the magnon Hall effect. Science 329, 297 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Zhang, L., Ren, J., Wang, J. S. & Li, B. Topological magnon insulator in insulating ferromagnet. Phys. Rev. B 87, 144101 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Shindou, R., Ohe, J., Matsumoto, R., Murakami, S. & Saitoh, E. Chiral spin-wave edge modes in dipolar magnetic thin films. Phys. Rev. B 87, 174402 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Shen, K. Magnon spin relaxation and spin Hall effect due to the dipolar interaction in antiferromagnetic insulators. Phys. Rev. Lett. 124, 077201 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Liu, J., Wang, L. & Shen, K. Spin-orbit coupling and linear crossings of dipolar magnons in van der Waals antiferromagnets. Phys. Rev. B 102, 144416 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Liu, J., Wang, L. & Shen, K. Dipolar spin waves in uniaxial easy-axis antiferromagnets: a natural topological nodal-line semimetal. Phys. Rev. Res. 2, 023282 (2020).

    Article 

    Google Scholar
     

  • Luttinger, J. M. & Tisza, L. Theory of dipole interaction in crystals. Phys. Rev. 70, 954 (1946).

    ADS 
    Article 

    Google Scholar
     

  • Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966).

    ADS 
    Article 

    Google Scholar
     

  • Malozovsky, Y. M. & Rozenbaum, V. M. Orientational ordering in two-dimensional systems with long-range interaction. Phys. A 175, 127 (1991).

    Article 

    Google Scholar
     

  • Zimmerman, G. O., Ibrahim, A. K. & Wu, F. Y. Planar classical dipolar system on a honeycomb lattice. Phys. Rev. B 37, 2059 (1988).

    ADS 
    Article 

    Google Scholar
     

  • Rozenbaum, V. M. Ground state and vibrations of dipoles on a honeycomb lattice. Phys. Rev. B 51, 1290 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Maksymenko, M., Chandra, V. R. & Moessner, R. Classical dipoles on the kagome lattice. Phys. Rev. B 91, 184407 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Krämer, K. W. et al. Noncollinear two- and three-dimensional magnetic ordering in the honeycomb lattices of ErX3 (X=Cl, Br, I). Phys. Rev. B 60, R3724 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Braekken, H. Die Kristallstruktur der Trijodide von Arsen, Antimon und Wismut. Z. Krist. 74, 67 (1930).

  • Bertaut, E. F. In Magnetism, vol. III (eds Rado Suhl, G. T. & Suhl, H.) 150, (Academic Press, 1963).

  • Rastelli, E., Carbognani, A., Regina, S. & Tassi, A. Order by thermal disorder in 2D planar rotator model with dipolar interactions. Eur. Phys. J. B 9, 641 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Enjalran, M. & Gingras, M. J. P. Theory of paramagnetic scattering in highly frustrated magnets with long-range dipole-dipole interactions: the case of the Tb2Ti2O7 pyrochlore antiferromagnet. Phys. Rev. B 70, 174426 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Jensen, J. & Macintosh, A. R. Rare Earth Magnetism (Clarendon Press, Oxford, 1991).

  • Wehling, T. O., Black-Schaffer, A. M. & Balatsky, A. V. Dirac materials. Adv. Phys. 63, 1 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Fransson, J., Black-Schaffer, A. M. & Balatsky, A. V. Magnon Dirac materials. Phys. Rev. B 94, 075401 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Boyko, D., Balatsky, A. V. & Haraldsen, J. T. Evolution of magnetic Dirac bosons in a honeycomb lattice. Phys. Rev. B 97, 014433 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Pershoguba, S. S. et al. Dirac magnons in honeycomb ferromagnets. Phys. Rev. X 8, 011010 (2018).


    Google Scholar
     

  • Li, K. et al. Dirac and nodal line magnons in three-dimensional antiferromagnets. Phys. Rev. Lett. 119, 247202 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Bao, S. et al. Discovery of coexisting Dirac and triply degenerate magnons in a three-dimensional antiferromagnet. Nat. Commun. 9, 2591 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Yao, W. et al. Topological spin excitations in a three-dimensional antiferromagnet. Nat. Phys. 14, 1011 (2018).

    Article 

    Google Scholar
     

  • Yuan, B. et al. Dirac magnons in a honeycomb lattice quantum XY magnet CoTiO3. Phys. Rev. X 10, 011062 (2020).


    Google Scholar
     

  • Chen, L. et al. Topological spin excitations in honeycomb ferromagnet CrI3. Phys. Rev. X 8, 041028 (2018).


    Google Scholar
     

  • Delugas, P. et al. Magnon-phonon interactions open a gap at the Dirac point in the spin-wave spectra of CrI3 2D magnets. Preprint at arXiv:2105.04531 (2021).

  • Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene: from gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Qian, K., Apigo, D. J., Prodan, C., Barlas, Y. & Prodan, E. Topology of the valley-Chern effect. Phys. Rev. B 98, 155138 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Ghader, D. Valley-polarized domain wall magnons in 2D ferromagnetic bilayers. Sci. Rep. 10, 16733 (2020).

    Article 

    Google Scholar
     

  • Zhai, X. & Blanter, Y. M. Topological valley transport of gapped Dirac magnons in bilayer ferromagnetic insulators. Phys. Rev. B 102, 075407 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Mook, A., Henk, J. & Mertig, I. Topologically nontrivial magnons at an interface of two kagome ferromagnets. Phys. Rev. B 91, 224411 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Pich, C. & Schwabl, F. Spin-wave dynamics of two-dimensional isotropic dipolar honeycomb antiferromagnets. J. Magn. Magn. Mater. 148, 30–31 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Streubel, R. et al. Spatial and temporal correlations of XY macro spins. Nano. Lett. 18, 7428–7434 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107 (2011).

    ADS 
    Article 

    Google Scholar
     



  • Source link