Dipolar spin-waves and tunable band gap at the Dirac points in the 2D magnet ErBr3
Parkin, S., Jiang, X., Kaiser, C., Panchula, A. & Samant, M. Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661 (2003).
Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).
Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D: Appl. Phys. 43, 264001 (2010).
Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453 (2015).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419 (2013).
Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408 (2019).
Xing, W. et al. Magnon transport in quasi two-dimensional van der Waals antiferromagnets. Phys. Rev. X 9, 011026 (2019).
Zhang, Y. et al. MnPS3 spin-flop transition-induced anomalous Hall effect in graphite flake via van der Waals proximity coupling. Nanoscale 12, 23266 (2020).
Wang, X. S., Zhang, H. W. & Wang, X. R. Topological magnonics: a paradigm for spin-wave manipulation and device design. Phys. Rev. Appl. 9, 024029 (2018).
Mook, A., Plekhanov, K., Klinovaja, J. & Loss, D. Interaction-stabilized topological magnon insulator in ferromagnets. Phys. Rev. X 11, 021061 (2021).
Mook, A., Henk, J. & Mertig, I. Edge states in topological magnon insulators. Phys. Rev. B 90, 024412 (2014).
Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960).
Onose, Y. et al. Observation of the magnon Hall effect. Science 329, 297 (2010).
Zhang, L., Ren, J., Wang, J. S. & Li, B. Topological magnon insulator in insulating ferromagnet. Phys. Rev. B 87, 144101 (2013).
Shindou, R., Ohe, J., Matsumoto, R., Murakami, S. & Saitoh, E. Chiral spin-wave edge modes in dipolar magnetic thin films. Phys. Rev. B 87, 174402 (2013).
Shen, K. Magnon spin relaxation and spin Hall effect due to the dipolar interaction in antiferromagnetic insulators. Phys. Rev. Lett. 124, 077201 (2020).
Liu, J., Wang, L. & Shen, K. Spin-orbit coupling and linear crossings of dipolar magnons in van der Waals antiferromagnets. Phys. Rev. B 102, 144416 (2020).
Liu, J., Wang, L. & Shen, K. Dipolar spin waves in uniaxial easy-axis antiferromagnets: a natural topological nodal-line semimetal. Phys. Rev. Res. 2, 023282 (2020).
Luttinger, J. M. & Tisza, L. Theory of dipole interaction in crystals. Phys. Rev. 70, 954 (1946).
Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966).
Malozovsky, Y. M. & Rozenbaum, V. M. Orientational ordering in two-dimensional systems with long-range interaction. Phys. A 175, 127 (1991).
Zimmerman, G. O., Ibrahim, A. K. & Wu, F. Y. Planar classical dipolar system on a honeycomb lattice. Phys. Rev. B 37, 2059 (1988).
Rozenbaum, V. M. Ground state and vibrations of dipoles on a honeycomb lattice. Phys. Rev. B 51, 1290 (1995).
Maksymenko, M., Chandra, V. R. & Moessner, R. Classical dipoles on the kagome lattice. Phys. Rev. B 91, 184407 (2015).
Krämer, K. W. et al. Noncollinear two- and three-dimensional magnetic ordering in the honeycomb lattices of ErX3 (X=Cl, Br, I). Phys. Rev. B 60, R3724 (1999).
Braekken, H. Die Kristallstruktur der Trijodide von Arsen, Antimon und Wismut. Z. Krist. 74, 67 (1930).
Bertaut, E. F. In Magnetism, vol. III (eds Rado Suhl, G. T. & Suhl, H.) 150, (Academic Press, 1963).
Rastelli, E., Carbognani, A., Regina, S. & Tassi, A. Order by thermal disorder in 2D planar rotator model with dipolar interactions. Eur. Phys. J. B 9, 641 (1999).
Enjalran, M. & Gingras, M. J. P. Theory of paramagnetic scattering in highly frustrated magnets with long-range dipole-dipole interactions: the case of the Tb2Ti2O7 pyrochlore antiferromagnet. Phys. Rev. B 70, 174426 (2004).
Jensen, J. & Macintosh, A. R. Rare Earth Magnetism (Clarendon Press, Oxford, 1991).
Wehling, T. O., Black-Schaffer, A. M. & Balatsky, A. V. Dirac materials. Adv. Phys. 63, 1 (2014).
Fransson, J., Black-Schaffer, A. M. & Balatsky, A. V. Magnon Dirac materials. Phys. Rev. B 94, 075401 (2016).
Boyko, D., Balatsky, A. V. & Haraldsen, J. T. Evolution of magnetic Dirac bosons in a honeycomb lattice. Phys. Rev. B 97, 014433 (2018).
Pershoguba, S. S. et al. Dirac magnons in honeycomb ferromagnets. Phys. Rev. X 8, 011010 (2018).
Li, K. et al. Dirac and nodal line magnons in three-dimensional antiferromagnets. Phys. Rev. Lett. 119, 247202 (2017).
Bao, S. et al. Discovery of coexisting Dirac and triply degenerate magnons in a three-dimensional antiferromagnet. Nat. Commun. 9, 2591 (2018).
Yao, W. et al. Topological spin excitations in a three-dimensional antiferromagnet. Nat. Phys. 14, 1011 (2018).
Yuan, B. et al. Dirac magnons in a honeycomb lattice quantum XY magnet CoTiO3. Phys. Rev. X 10, 011062 (2020).
Chen, L. et al. Topological spin excitations in honeycomb ferromagnet CrI3. Phys. Rev. X 8, 041028 (2018).
Delugas, P. et al. Magnon-phonon interactions open a gap at the Dirac point in the spin-wave spectra of CrI3 2D magnets. Preprint at arXiv:2105.04531 (2021).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).
Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).
Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene: from gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009).
Qian, K., Apigo, D. J., Prodan, C., Barlas, Y. & Prodan, E. Topology of the valley-Chern effect. Phys. Rev. B 98, 155138 (2018).
Ghader, D. Valley-polarized domain wall magnons in 2D ferromagnetic bilayers. Sci. Rep. 10, 16733 (2020).
Zhai, X. & Blanter, Y. M. Topological valley transport of gapped Dirac magnons in bilayer ferromagnetic insulators. Phys. Rev. B 102, 075407 (2020).
Mook, A., Henk, J. & Mertig, I. Topologically nontrivial magnons at an interface of two kagome ferromagnets. Phys. Rev. B 91, 224411 (2015).
Pich, C. & Schwabl, F. Spin-wave dynamics of two-dimensional isotropic dipolar honeycomb antiferromagnets. J. Magn. Magn. Mater. 148, 30–31 (1995).
Streubel, R. et al. Spatial and temporal correlations of XY macro spins. Nano. Lett. 18, 7428–7434 (2018).
Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107 (2011).