Blog

Classical analog of qubit logic based on a magnon Bose–Einstein condensate

11:31 02 agosto in Artículos por Website
0


  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Williams, C. P. Explorations in Quantum Computing (Springer, London, 2011).

  • Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Makhlin, Y., Schön, G. & Shnirman, A. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001).

    ADS 
    MATH 
    Article 

    Google Scholar
     

  • Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Meyer, D. A. Quantum computing classical physics. Philos. Trans. R. Soc. A 360, 395–405 (2002).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2010).

  • Deutsch, I. H. Harnessing the power of the second quantum revolution. PRX Quantum 1, 020101 (2020).

    Article 

    Google Scholar
     

  • Hidary, J. D. Quantum Computing: An Applied Approach (Springer International Publishing, 2019).

  • Wie, C.-R. Two-qubit Bloch sphere. Physics 2, 383–396 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Arecchi, F. T., Courtens, E., Gilmore, R. & Thomas, H. Atomic coherent states in quantum optics. Phys. Rev. A 6, 2211–2237 (1972).

    ADS 
    Article 

    Google Scholar
     

  • Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Estève, J., Gross, C., Weller, A., Giovanazzi, S. & Oberthaler, M. K. Squeezing and entanglement in a Bose–Einstein condensate. Nature 455, 1216–1219 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Stone, A. D. Einstein and the Quantum: The Quest of the Valiant Swabian (Princeton University Press, 2015).

  • Einstein, A. Quantentheorie des einatomigen idealen Gases. Sitzungsber. Preuss. Akad. Wiss. Phys.-math. Kl. 22, 261 (1924).

    MATH 

    Google Scholar
     

  • Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    Article 

    Google Scholar
     

  • Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Bunkov, Y. M. & Volovik, G. E. Bose–Einstein condensation of magnons in superfluid 3He. J. Low. Temp. Phys. 150, 135–144 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Autti, S. et al. Nonlinear two-level dynamics of quantum time crystals. Nat. Commun. 13, 3090 (2022).

    ADS 
    Article 

    Google Scholar
     

  • Qaiumzadeh, A., Skarsvåg, H., Holmqvist, C. & Brataas, A. Spin superfluidity in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 118, 137201 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Tserkovnyak, Y. & Kläui, M. Exploiting coherence in nonlinear spin-superfluid transport. Phys. Rev. Lett. 119, 187705 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Byrnes, T., Wen, K. & Yamamoto, Y. Macroscopic quantum computation using Bose–Einstein condensates. Phys. Rev. A 85, 040306(R) (2012).

    ADS 
    Article 

    Google Scholar
     

  • Adrianov, S. N. & Moiseev, S. A. Magnon qubit and quantum computing on magnon Bose–Einstein condensates. Phys. Rev. A 90, 042303 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Mohseni, N. et al. Error suppression in adiabatic quantum computing with qubit ensembles. Npj Quantum Inf. 7, 71 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Semenenko, H. & Byrnes, T. Implementing the Deutsch-Jozsa algorithm with macroscopic ensembles. Phys. Rev. A 93, 052302 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Xue, Y. et al. Split-ring polariton condensates as macroscopic two-level quantum systems. Phys. Rev. Res. 3, 013099 (2021).

    Article 

    Google Scholar
     

  • Ghosh, S. & Liew, T. C. H. Quantum computing with exciton-polariton condensates. npj Quantum Inf. 6, 16 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Böhi, P. et al. Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip. Nat. Phys. 5, 592–597 (2009).

    Article 

    Google Scholar
     

  • Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Fadel, M., Zibold, T., Décamps, B. & Treutlein, P. Spatial entanglement patterns and Einstein–Podolsky–Rosen steering in Bose–Einstein condensates. Science 360, 409–413 (2018).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Lange, K. et al. Entanglement between two spatially separated atomic modes. Science 360, 416–418 (2018).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Krauter, H. et al. Deterministic quantum teleportation between distant atomic objects. Nat. Phys. 9, 400–404 (2013).

    Article 

    Google Scholar
     

  • Pyrkov, A. N. & Byrnes, T. Full-Bloch-sphere teleportation of spinor Bose–Einstein condensates and spin ensembles. Phys. Rev. A 90, 062336 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Serga, A. A. et al. Bose–Einstein condensation in an ultra-hot gas of pumped magnons. Nat. Commun. 5, 3452 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Safranski, C. et al. Spin caloritronic nano-oscillator. Nat. Commun. 8, 117 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Schneider, M. et al. Bose–Einstein condensation of quasiparticles by rapid cooling. Nat. Nanotech. 15, 457–461 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Schneider, M. et al. Control of the Bose–Einstein condensation of magnons by the spin Hall effect. Phys. Rev. Lett. 127, 237203 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Divinskiy, B. et al. Evidence for spin current driven Bose–Einstein condensation of magnons. Nat. Commun. 12, 6541 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Nowik-Boltyk, P., Dzyapko, O., Demidov, V. E., Berloff, N. G. & Demokritov, S. O. Spatially non-uniform ground state and quantized vortices in a two-component Bose–Einstein condensate of magnons. Sci. Rep. 2, 482 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Bugrij, A. I. & Loktev, V. M. On the theory of spatially inhomogeneous Bose–Einstein condensation of magnons in yttrium iron garnet. Low. Temp. Phys. 39, 1037 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Nakata, K., van Hoogdalem, K. A., Simon, P. & Loss, D. Josephson and persistent spin currents in Bose–Einstein condensates of magnons. Phys. Rev. B 90, 144419 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Bozhko, D. A. et al. Supercurrent in a room-temperature Bose–Einstein magnon condensate. Nat. Phys. 12, 1057–1062 (2016).

    Article 

    Google Scholar
     

  • Bozhko, D. A. et al. Bogoliubov waves and distant transport of magnon condensate at room temperature. Nat. Commun. 10, 2460 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Kreil, A. J. E. et al. Experimental observation of Josephson oscillations in a room-temperature Bose–Einstein magnon condensate. Phys. Rev. B 104, 144414 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Noack, T. B. et al. Evolution of room-temperature magnon gas: Toward a coherent Bose–Einstein condensate. Phys. Rev. B 104, L100410 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Biham, E., Brassard, G., Kenigsberg, D. & Mor, T. Quantum computing without entanglement. Theor. Comput. Sci. 320, 15–33 (2004).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Lanyon, B. P., Barbieri, M., Almeida, M. P. & White, A. G. Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Balynsky, M. et al. Quantum computing without quantum computers: Database search and data processing using classical wave superposition. J. Appl. Phys. 130, 164903 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Cheng, K. et al. Optical realization of wave-based analog computing with metamaterials. Appl. Sci. 11, 141 (2021).

    Article 

    Google Scholar
     

  • Schlömann, E. Longitudinal susceptibility of ferromagnets in strong rf fields. J. Appl. Phys. 33, 527–534 (1962).

    ADS 
    Article 

    Google Scholar
     

  • L’vov, V. S. Wave Turbulence Under Parametric Excitation: Applications to Magnets (Springer, Berlin, 1994).

  • Melkov, G. A. et al. Parametric interaction of magnetostatic waves with a nonstationary local pump. J. Exp. Theor. Phys. 89, 1189–1199 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Dzyapko, O. et al. High-resolution magneto-optical Kerr-effect spectroscopy of magnon Bose–Einstein condensate. IEEE Magn. Lett. 7, 3501805 (2016).

    Article 

    Google Scholar
     

  • Sugakov, V. I. Formation of new phase inclusions in the system of quasiequilibrium magnons of high density. Phys. Rev. B 94, 014407 (2016).

  • Pitaevskii, L. P. Bose–Einstein condensation in magnetic traps. Introduction to the theory. Phys. Usp. 41, 569–580 (1998).

    Article 

    Google Scholar
     

  • Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Mohseni, M. et al. Bose–Einstein condensation of nonequilibrium magnons in confined systems. N. J. Phys. 22, 083080 (2020).

    Article 

    Google Scholar
     

  • Rezende, S. M. Theory of coherence in Bose–Einstein condensation phenomena in a microwave-driven interacting magnon gas. Phys. Rev. B 79, 174411 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Visser, H. J. Array and Phased Array Antenna Basics (John Wiley and Sons, 2006).

  • Visser, H. J. Modern Antenna Design, 2nd Ed. (John Wiley and Sons, 2005).

  • Griffiths, D. Introduction to Quantum Mechanics, 2nd Ed. (Pearson Prentice Hall, 2005).

  • Dudin, Y. O., Li, L., Bariani, F. & Kuzmich, A. Observation of coherent many-body Rabi oscillations. Nat. Phys. 8, 790–794 (2012).

    Article 

    Google Scholar
     

  • Rosanov, N. N. Nonlinear Rabi oscillations in a Bose–Einstein condensate. Phys. Rev. A 88, 063616 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Chumak, A. V. et al. All-linear time reversal by a dynamic artificial crystal. Nat. Commun. 1, 141 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Karenowska, A. D. et al. Oscillatory energy exchange between waves coupled by a dynamic artificial crystal. Phys. Rev. Lett. 108, 015505 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Elyasi, M., Blanter, Y. M. & Bauer, G. E. W. Resources of nonlinear cavity magnonics for quantum information. Phys. Rev. B 101, 054402 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405–408 (2015).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425–428 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Dzyapko, O. et al. Magnon-magnon interactions in a room-temperature magnonic Bose–Einstein condensate. Phys. Rev. B 96, 064438 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Chumak, A. V. et al. Bose–Einstein condensation of magnons under incoherent pumping. Phys. Rev. Lett. 102, 187205 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Autti, S. et al. AC Josephson effect between two superfluid time crystals. Nat. Mater. 20, 171–174 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Fripp, K. G. & Kruglyak, V. V. Spin-wave wells revisited: from wavelength conversion and Möbius modes to magnon valleytronics. Phys. Rev. B 103, 184403 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Cherepanov, V., Kolokolov, I. & L’vov, V. S. The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys. Rep. – Rev. Sec. Phys. Lett. 229, 81–144 (1993).


    Google Scholar
     

  • Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: Non-Relativistic Theory, Vol. 3, 3rd ed. (Pergamon Press, 1977).

  • Zakharov, V. E., L’vov, V. S. & Starobinets, S. S. Instability of monochromatic spin waves. Solid State Phys. 11, 2922–2930 (1969).


    Google Scholar
     

  • Zakharov, V. E., L’vov, V. S. & Falkovich, G. Kolmogorov Spectra of Turbulence. I Wave Turbulence (Springer-Verlag, 2002).



  • Source link